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Multifractal statistics of multiparticle production at high energies
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Abstract. It is shown that high energy multiparticle production near the morphological phase transition
from monofractality to multifractality is characterized by a multifractal Bernoulli distribution. Experi-
mental data on hadron-hadron, hadron-nucleus and on heavy ions collisions are used to show an universal
character of this distribution (and, consequently, of the morphological phase transition) in multiparticle
production at high energies.

PACS. 13.85.Hd Inelastic scattering: many particle final state – 24.60.Ky Fluctuation phenomena

1 Introduction

Statistics of multiparticle production at high energies are
studied very intensively in the last decade (see for recent
reviews [1,2]). There are two ways to describe the statis-
tics: 1) using probability density or characteristic func-
tions, 2) using a system of moments. In papers [3] the sec-
ond way was successfully applied to interpret some exper-
imental data on multiparticle production at high energies.
Suppose that underlying dynamics is determined by a cas-
cade process the authors of [3] suggested log-normal distri-
bution to describe the experimental data represented in a
form of a system of factorial moments. Another direction
of the investigation implies the phase-transition like in-
terpretation [4], [5]. Monofractal picture (from which this
approach starts [4]) leads to simple Bernoulli distribution
[6]. Then more complex cascade and phase-transition like
models were suggested and correspondingly more complex
known probability distributions (such as Levy stable law
and negative binomial distribution) were used.

It is clear that multifractal dynamics appears as a de-
velopment of the monofractal states (this development can
take a critical character). On the other hand, we don’t
know how this transition proceeds and what probability
law should be used for its description. It seems naturally
that this probability law should play a significant role in
the multifractal processes, due to its presumably universal
(as it usually takes place at critical phenomena) charac-
ter. Especially, if the multiparticle production processes
occur near the transition. Therefore, in the present paper,
we will find and describe in an explicit form a probability
law corresponding to the transition from monofractality to
multifractality (multifractal Bernoulli distribution). Then
we check whether the experimental data on different high
energy production processes can be fitted by this tran-

sitional distribution. It was a surprise that experimental
data on hadron-hadron, hadron-nucleus and on very heavy
ions collisions at high energies not only are in good agree-
ment with the multifractal Bernoulli distribution, but also
some (thermodynamic) parameter of this distribution (so-
called multifractal specific heat) takes approximately the
same constant value (' 1/4) in all these processes (cf. also
a preliminary communication [7]). So that universality of
this transitional distribution seems to be an indication of
critical character of all these reactions. On the other hand,
a constant value of the multifractal specific heat implies
that we are far away from the ’transitional point’ itself.
This unusual property of the multifractal thermodynamics
of the multiparticle production can be related to the un-
usual thermodynamics properties of dynamical systems at
the onset of chaos and we consider this question elsewhere
[7].

2 Phase transition from monofractality to
multifractality

Let ∆η be the pseudo-rapidity interval, and subdivide into
M bins each of width δη = ∆η/M . Let N be the number
of particles in one event in ∆η interval and km be the
number of particles in the m-th bin. The Gq moments are
defined as [8]

Gq =
M∑
m=1

µqm (1)

where µm = km/N is the probability of particles in the
m-th bin for one event and q is any real number. The sum-
mation is carried out over non-empty bins only. If the mul-
tiparticle production process exhibit self-similar behavior
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then the moment follow the power law

Gq ∝ (δη/∆η)τ(q). (2)

The generalized dimension spectrum is then given by:

Dq = τ(q)/(q − 1). (3)

Then, if one uses standard averaging one obtains

〈µq〉 =
∑M
i=1[µi(l)]q

M
∝ (δη/∆η)(τq+1) (4)

Let us define

µi = µi/max
i
{µi}. (5)

Then
〈µp〉 =

1
M

∑
i

µi
p. (6)

The simplest structure, that can be used for fractal de-
scription, is a system for which µi can take only two val-
ues 0 and 1. It follows from (5) that for such system (with
p > 0)

〈µp〉 = 〈µ〉 (7)

and fluctuations in this system can be identified as
Bernoulli fluctuations [6]. It is clear that the Bernoulli
fluctuations can be monofractal only.

Generalization of (6) in form of a generalized scaling

〈µp〉 ∼ 〈µ〉g(p) (8)

can be used to describe more complex (multifractal) sys-
tems. We use invariance of the generalized scaling (7) with
dimension transform [9]

µi → µi
λ (9)

to find g(p). This invariance means that

〈(µλ)p〉 ∼ 〈(µλ)〉g(p) (10)

for all positive λ. Then, it follows from (7) and (9) that

〈(µ)λp〉 ∼ 〈µ〉g(λp) ∼ 〈µ〉g(λ)g(p) (11)

Hence,
g(λp) = g(λ)g(p). (12)

The general solution of the functional equation (11) is
given by

g(p) = pγ (13)

where γ is a positive number. It should be noted that
case γ = 1 corresponds to Gauss fluctuations [10]. We,
however, shall consider the limit γ → 0 (i.e. transition to
the Bernoulli fluctuations). This transition is non-trivial.
Indeed, let us consider generalized scaling

Fqm ∼ Fα(q,k,m)
km (14)

where
Fqm = 〈µq〉/〈µm〉 (15)

Substituting (7) into (13),(14) and using (12) we obtain

α(q, k,m) =
qγ −mγ

kγ −mγ
.

Hence,

lim
γ→0

α(q, k,m) =
ln(q/m)
ln(k/m)

. (16)

If there is ordinary scaling

〈µp〉 ∼ (δη/∆η)ζp , (17)

then

α(q, k,m) =
ζq − ζm
ζk − ζm

(18)

Comparing (15) and (17) we obtain at the limit γ → 0

ζq − ζm
ζk − ζm

=
ln(q/m)
ln(k/m)

. (19)

The general solution of the functional equation (18) is

ζq = a+ c ln q, (20)

where a and c are some constants.
If we use the relationship

max
i
{µi} ∼ (δη/∆η)D∞ (21)

(see, for instance, [11]), then it follows from (3)–(5) and
(16), (19), (20) that

Dq = D∞ + c
ln q

(q − 1)
(22)

for the multifractal Bernoulli fluctuations (i.e. for the fluc-
tuations which appear at the limit γ → 0).

3 Characteristic function

From (7), (16) and (19) we can find g(p) corresponding to
the multifractal Bernoulli fluctuations

g(p) = 1 +
c

a
ln p (23)

where a = d − D∞. One can see that for finite c the
dimension-invariance is broken at the limit γ → 0.

Let us find the characteristic function of the multifrac-
tal Bernoulli distribution. It is known that the character-
istic function χ(λ) can be represented by following series
(see, for instance [6])

χ(λ) =
∞∑
p=0

(iλ)p

p!
〈µp〉 (24)
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Then using (7) and (22) we obtain from (23)

χ(λ) = 1 + 〈µ〉
∞∑
p=1

(iλ)p

p!
pβ (25)

where
β =

c

(d−D∞)
ln〈µ〉 (26)

The characteristic function (24) gives complete descrip-
tion of the multifractal Bernoulli distribution. When c = 0
distribution (24)-(25) coincides with the simple Bernoulli
distribution [6]. The multifractality-monofractality phase
transition (with γ → 0) corresponds to a gap from c = 0
to a finite non-zero value of c. If we use a thermodynamic
interpretation of multifractality (see for a recent review
[1]), then the constant c can be interpreted as multifrac-
tal specific heat of the system. The gap of the multifractal
specific heat at the multifractality-monofractality transi-
tion (i.e. with γ → 0) allows us consider this transition as
a thermodynamic phase transition [1], [4] [5], [12].

4 Experimental data

Let us compare these theoretical results with laboratory
data. Figure 1 (adapted from [13]) shows a generalized di-
mension spectrum Dq against variable ln(q)/(q− 1). This
generalized dimension spectrum (dots) was calculated in
[13] using experimental data reported by the NA22 collab-
oration [14] who investigated the π+p interactions with
the centre-of-mass energy (s)1/2 = 22GeV . Calculations
were performed in pseudo-rapidity phase space. Straight
line in this figure indicates agreement of the data with
the multifractal Bernoulli representation (21). If we cal-
culate the multifractal specific heat from Fig. 1 we obtain
c ' 0.26± 0.03

In paper [15] results of intermittency in multiparticle
production in proton interactions with various target nu-
clei in emulsion at 800 GeV (at Fermilab) are reported.

Fig. 1. Generalized dimension spectrum (adapted from [13])
for π+p interactions with the centre-of-mass energy (s)1/2 =
22GeV . The straight line is drawn for comparison with the
multifractal Bernoulli representation (21)

Fig. 2. Generalized dimension spectra (adapted from [15])
for multiparticle production in proton interactions with var-
ious target nuclei in emulsion at 800 GeV (at Fermilab). The
straight lines are drawn for comparison with the multifractal
Bernoulli representation (21)

Figure 2 (adapted from [15]) shows results obtained for p-
Nucleon, p-CNO, and p-AgBr interactions. Calculations
were performed in the pseudo-rapidity space. The axes in
this figure are chosen so that straight lines indicate agree-
ment of the data with the multifractal Bernoulli represen-
tation (21). The multifractal specific heat calculated from
this figure – c ' 0.27± 0.01.

The experimental spectrum (dots) shown in Fig. 3 was
calculated in a recent paper [16] using the pseudo-rapidity
phase space for the shower particles produced in the inter-
actions of 197Au emulsion at 10.6A GeV. The straight line
in this figure indicates agreement between the data and
the multifractal Bernoulli representation (21) with multi-
fractal specific heat c ' 0.23 ± 0.02. Analogous data on
28Si ions collisions (also represented in [16]) don’t give
such clear indication of the morphological phase transi-
tion. This trend is confirmed by the data represented in
paper [17] and obtained for projectile fragments in nuclear
collisions at (1-2)A GeV. Figure 4 shows generalized di-
mension spectra calculated in [17] for 238U at 0.96A GeV
both in the pseudo-rapidity (lower set of dots) and in the

Fig. 3. Generalized dimension spectrum for 197Au collisions
on 10.6A GeV (dots). Data taken from [16]. The straight line
is drawn for comparison with the multifractal Bernoulli repre-
sentation (21)
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Table 1. Values of multifractal specific heat, c, calculated using data shown in Figs. 1–4. “Hadron-hadron” column corresponds
to π+p interaction (Fig. 1), “hadron-nucleus” column corresponds to proton interactions with various target nuclei in emulsion
(Fig. 2), “heavy ions 1” column corresponds to 197Au collisions (Fig. 3). All these data are calculated in pseudo-rapidity
phase space. “Heavy ions 2” and “heavy ions 3” columns correspond to 238U collisions for data calculated in azimuthal and
pseudo-rapidity phase spaces correspondingly (Fig. 4)

hadron-hadron hadron-nucleus heavy ions 1 heavy ions 2 heavy ions3

C 0.26÷ 0.03 0.27÷ 0.01 0.23÷ 0.02 0.26÷ 0.02 0.24÷ 0.02

Fig. 4. Generalized dimension spectra for 238U collisions at
0.96A GeV (dots). Data taken from [17]. Lower set of dots cor-
respond to pseudo-rapidity phase space and upper set of dots
corresponds to azimuthal phase space. The straight lines are
drawn for comparison with the multifractal Bernoulli represen-
tation (21)

azimuthal (upper set of dots) phase spaces. And again
the straight lines drawn in this figure indicate agreement
between the data and the multifractal Bernoulli represen-
tation (21) with multifractal specific heat c ' 0.26± 0.02
in the azimuthal space and c ' 0.24± 0.02 in the pseudo-
rapidity space. Analogous data calculated in paper [17]
for 84Kr and for 56Fe ion collisions don’t give such clear
indication.

Thus, we can conclude that:
1. The experimental data presented here suggest a

dominant role of the multifractal Bernoulli fluctuations
in the multiparticle production at considered reactions
(Figs. 1–4);

2. In all these reactions the multifractal specific heat
is close to value 1/4 (Table 1).

It should be also noted that considered here reactions
correspond to very different energy depositions. Therefore
the question is: Should the morphological (monofractality-
multifractality) phase transition be related to a dynami-
cal phase transition (in present context – to the liquid-gas
phase transition, because all reactions presented here are
expected to lie below the transition to the quark-gluon

phase [18]). If one gives a positive answer to this question,
then the next questions are: a) What experimental pa-
rameter controls the monofractality-multifractality phase
transition, and b) Which reactions should be investigated
to observe the monofractal case with c = 0 (cf. [4])? In
present stage we cannot give definite answers to these im-
portant questions and we hope that these problems will
stimulate future investigations (both theoretical and ex-
perimental).

The author is grateful to D. Stauffer for discussions, to Referee
for questions, comments and suggestions, and to Machanaim
Center (Jerusalem) for support.
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